Marilyn Claire Wolf

Safe and Secure Cyber-Physical Systems 
Dr. Marilyn Claire Wolf, Georgia Tech University
April 23rd, 2018
JBHT 236




Abstract: Safe and Secure Cyber-Physical SystemsMarilyn Wolf

Cyber-physical systems operate in many important, safety-critical environments. Safety and security have traditionally been separate disciplines: safety from traditional engineering, security from computer science. The advent of cyber-physical systems that tightly couple computers and physical systems mean that we can no longer treat these topics as separate. The first part of this talk will discuss the interactions between safety and security in cyber-physical systems.

The second part of this talk will concentrate on one approach to improve safety and security of cyber-physical systems. Service-oriented architectures are widely used in information processing and Web technologies to provide scalable access to resources in distributed systems and extensible applications. However, many traditional service-oriented architectures are designed for transaction processing. In contrast, cyber-physical systems used for real-time control require quality-of-service constraints and graceful handling of failures to provide requested services. Furthermore, given the long lives of cyber-physical systems, we must be able to guarantee QoS properties as we add new services after deployment. We will discuss a series of abstractions for cyber-physical systems that guarantee quality-of-service properties are maintained both for a single service and for a composition of services.


Short bio:  Marilyn Wolf is Farmer Distinguished Chair and Georgia Research Alliance Eminent Scholar at the Georgia Institute of Technology.  She received her BS, MS, and PhD in electrical engineering from Stanford University in 1980, 1981, and 1984, respectively.  She was with AT&T Bell Laboratories from 1984 to 1989.  She was on the faculty of Princeton University from 1989 to 2007.  Her research interests included embedded computing, embedded video and computer vision, and VLSI systems. She has received the ASEE Terman Award and IEEE Circuits and Systems Society Education Award. She is a Fellow of the IEEE and ACM and an IEEE Computer Society Golden Core member.